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Wave-growth associated with
turbulent spot in plane Poiseuille flow

By D. S. Henningson 1, M. T. Landahl 2 and J. Kim 3

A kinematic wave theory is used to investigate the cause of the rapid growth of

waves observed at the wingtip of turbulent spot in plane Poiseuille flow. It is found

that the qualitative behavior of the wave motions is well described by Landahl's

breakdown criterion as the wave selection procedure. The predicted wave number,

wave angle, and phase velocity are in agreement with those values obtained in a
direct simulation.

1. Introduction

A localized disturbance in plane Poiseuille flow can develop into a turbulent spot

if the Reynolds number ( Re = Ucnh/v , where UVL is the center line velocity

and h is the half-channel height) is above about 1000. Experiments (Carlson et

al. 1982; Alavyoon et al. 1986; Henningson & Alfredsson 1987) have shown that

oblique waves develop around the spot as it propagates downstream. Henningson

& Alfredsson (1987) observed the waves on the wingtips, i.e. the sides of the spot,

consisted of the least stable Tollmien-Schlichting (T-S) mode. A recent numerical

simulation of a Poiseuille flow spot (Henningson et al. 1987) shows that the wingtip

wave-packet extends into the spot where the waves attain very high amplitude

before they break down into turbulence. This indicates that the waves do play an

important role in the rapid spanwise growth of the spot. In boundary layer spots

(Chambers & Chambers 1983), however, waves are not seen to play such a role.

This poses the following questions. Is the spreading of the two spots caused by

different mechanisms? Are the waves just a passive response to disturbances in the

surrounding laminar flow induced by the turbulence fluctuations? As a first step

toward resolving these questions the present work addresses the cause of the rapid

growth of the waves observed in Poiseuille spots. The related question of wave
selection mechanism will also be considered.

2. Analysis

The wave pattern to be analyzed is shown in Fig. 1. Detailed descriptions of

the computations can be found in Henningson et al. (1987). In what follows,

all dimensional quantities are non-dimensionalized by the centerline velocity, UCL,
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and the channel half-width, h, and z, y, and z denote the streamwise, vertical and

spanwise directions, respectively. Fig. la shows a top view of + 0.01 contours of the

vertical velocity at the channel centerline. The front part of the spot has travelled

a distance of about 200 from its generation point at this time, t = 258. Fig. lb

shows the modal shape of the waves for the first few amplitude maxima and Fig.

lc shows the corresponding spanwise amplitude variation at the centerline. The

waves are seen to grow almost an order of magnitude as they propagate into the
___1-:1_ a.t_." .... 1_1 _'L .... _L'11 " _ ..... a._'_11-- J. 11-__. _f Jl • 1 , 1. •

i.e. the T-S wave. The calculations by I-lenningson et al. (1987) have shown that

the phase speed in the streamwise direction of the waves are approximately 0.6, the

absolute value of the wave number vector (k = V/a 2 +/32 ) about 1.8, and the angle

(¢) between the wave number vector and the streamwise direction about -65 °. The

velocity of the spot interface at the wingtip is approximately 0.7 in the streamwise

direction and 0.12 in the spanwise direction. (The interface here is taken to be

where the vertical velocity exceeds 0.02.)

A plausible explanation of the wave growth seen at the wingtip is interaction

between the changing mean profile and the waves. If the time and spatial scales

of the mean motion and the waves are widely separated, kinematic wave theory

(Witham 1974) is appropriate to analyze their interaction. The starting point of

the theory is a wave packet of the form,

ae i0 0 = olz +/3z -- wt

where a, a,/3 and w are assumed to be slowly varying functions of space and time.

The waves are assumed to have a known dispersion relation

=

which relates the variation of the angular frequency to the wavenumber vector

components. Using the definition of the phase, 0, and the dispersion relation, it can

be shown (Witham 1974),
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FIGURE 1. (a) A top view of + 0.01 contours of the vertical velocity at the channel

centerline: t=258, Re=lS00. (b) Profiles of the vertical velocity for the first few

amplitude maxima: --, x=186, z=-29.8; .... , z=186, z=-28.2; ........ , z=186,

z=-26.7; -----, z=186, z=-25.5. (c) Spanwise variations of the vertical velocity at

x=186 and y=0.

where A is the wave action density, which is proportional to the square of the

wave amplitude. The wave properties are seen to vary along the rays given by the

group velocity, _'9 = (aW/Oct, OW/O_). Landahl (1972) applied the above theory

to oblique T-S waves riding on an inhomogeniety consisting of a larger scale locally

two-dimensional wave. He was able to integrate the equation for the wave action

density along a ray to yield
A 1

Ao Cgn -- C 0

where cgn is the group velocity of the small scale oblique waves normal to the larger
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two-dimensional wave, and Co is the phase velocity of the two-dimensional wave.

Notice when cg_ approaches co the wave amplitude will increase dramatically. This

is a result of wave energy focusing. When the oblique waves approach the larger

wave, their energy piles up on top of the large one since energy is constantly supplied

by the incoming waves but no energy can leave, this results in an increase in the

amplitude of the oblique waves.

As a first try we shall assume that the edge of the spot, where the waves are
fOllnC]_ ix lnr'_ twn-d _,'nA '_ ...... ÷ko 1"_A_1-.,1'_ L.^^1._1 ....... : ---'--

i

(Landahl 1972): i.e., we will examine if the group velocity of the wingtip waves, for

any combination of wave numbers and frequency, is equal to the edge velocity at

the wingtip. If the breakdown criterion is satisfied for a specific combination of a,

fl and 0;, then the wave will experience a rapid growth as it approaches the spot

edge. Thus, this provides both a mechanism for growth and selection of the waves.

The dispersion relation for the T-S waves are found by solving an extended form

of the Orr-Sommerfeld equation (see Henningson et al 1087). The appropriate mean

velocity is

U(y) + W(y)tan(¢)

where U and W are the mean streamwise and spanwise velocity components, respec-

tively. U and W are found by horizontal averaging and the required combination is

fitted to a modified parabola

(1 -- y2)(Co -4- c2y 2 -Jr- c4y 4)

where Co, c2 and c4 are fitting constants. Profiles are fitted to the velcities seen in

Fig. 2 using the appropriate wave angle (only ¢ = 65" is shown in the figure). They

are obtained from the position indicated at the wingtip in Fig. la; the line in Fig.

la indicates the tangent of the spot edge at this position and the arrow is in the

direction of motion. Note that as the wave angle becomes large the departure of

the fitted velocity profiles from the parabolic one become greater. This results from

the inflectional character of the spanwise mean velocity, which have larger weight

for higher wave angles.

When the Orr-Sommerfeld equation is solved, the dispersion relation found is

usually complex. This requires a modification of the kinematic wave theory. Lan-

dam (1972) used a simple approach, which involves adding a growth/decay rate

term in the equation for the wave action density and the use of the real part of

the dispersion relation when the group velocity is calculated. This requires small

growth/decay rates and that the development of the wave packet is considered for

short times only. Assuming this to be true the breakdown criterion is still valid

(Landahl 1982). In the following we will thus use the real part of the dispersion

relation in our effort to look for waves that satisfy the breakdown criterion.

3. Results and Discussion

Results from the solution of the Orr-Sommerfeld equation for the position indi-

cated at the wingtip in Fig. la can be seen in Figs. 3-5. Contours of the group
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Mean velocity profiles at z=186, z=-30 and _b = -65 °.

velocity perpendicular to the spot edge (i.e. in the direction of the arrow in Fig. la)
are plotted as a function of k and _bin Fig. 3. Figs. 4 and 5 show contours of the

phase velocity in the streamwise direction and the imaginary part of the dispersion

relation. Note that the group velocity attains its maximum of 0.25 for k = 1.0 and

_b = 45 ° (Fig. 3). The edge velocity at this location from the simulation was 0.23.

The breakdown criterion is thus seen to be approximately fulfilled for k = 1.0 and

_b = 45 °. This particular wave should grow to large amplitude at the wingtip of the

spot. The waves actually observed has both higher wave number, wave angle and

phase velocity. However, the waves are damped at this position (see Fig. 5) and

only experience exponential growth for higher wave angles. Thus we might expect

to find a wave that approximately fulfills the breakdown criterion and at the same

time is gowing exponentially. To find such a wave we follow the ridge going from

the peak value in Fig. 3 up towards higher wave numbers. At around k=1.7 and

_b = -65 °, the waves start to grow. This is close to the observed wave parameters.

It should be noted here that this is an approximate analysis and that exact agree-

ment cannot be expected. However, it is encouraging to see that the the qualitative

behavior of the normal group velocity, with its ridge going through the observed

values, is able to select a wave using the breakdown criterion together with the

requirement of exponential growth, and thus explain the observed wave motions.

It should be an worthwhile effort in a future study to attack the full problem by

tracing the wave rays into the spot and calculating the amplitude along them.
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FIGURE 3. Contours of the group velocity perpendicular to the spot edge (i.e. in

the direction of the arrow in Fig. la).

Finally, the picture that emerges from the present analysis is that the waves

outside the spot are first generated by the moving turbulent disturbance, as dis-

cussed by for example Li & Widnall (1987), then they experience a growth by the

wave energy focusing mechanism and the inflextional character of the effective mean

velocity profile.
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FIGURE 4. Contours of the phase velocity in the streamwise direction.
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FIGURE 5. Contours of the imaginary part of the dispersion relation.
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Appendix

During the summer program a special half day workshop on the role of coherent

structures in turbulence modeling was organized by Prof. A. K. M. F. Hussain. The

objective was to explore ideas in the use of the knowledge of organized structures

in turbulence modeling.

Several participants were asked to make presentations, and five of these prepared

written position papers that are included in this appendix. These statements appear

as submitted by the authors. While these contain some interesting observations,

the organizers of the Summer Program feel that no solution was put forward to

the problem of incorporating the coherent structure research in Reynolds stress

modeling. This reflects the great difficulty of achieving this integration. Perhaps

the views expressed here will be helpful towards this end.


